
18th Telecommunications forum TELFOR 2010 Serbia, Belgrade, November 23-25, 2010.

Abstract— Compression algorithms reduce the redundancy in
data representation to decrease the storage required for that data.
Data compression offers an attractive approach to reducing
communication costs by using available bandwidth effectively.
Over the last decade there has been an unprecedented explosion
in the amount of digital data transmitted via the Internet,
representing text, images, video, sound, computer programs, etc.
With this trend expected to continue, it makes sense to pursue
research on developing algorithms that can most effectively use
available network bandwidth by maximally compressing data. It
is also important to consider the security aspects of the data being
transmitted while compressing it, as most of the text data
transmitted over the Internet is very much vulnerable to a
multitude of attacks. This paper is focused on addressing the
problem of lossless compression of text files wit an added security.
Lossless compression researchers have developed highly
sophisticated approaches, such as Huffman encoding, arithmetic
encoding, the Lempel-Ziv (LZ) family. However, none of these
methods has been able to reach the theoretical best-case
compression ratio consistently, which suggests that better
algorithms may be possible. We trying to attain better
compression ratios is to develop new compression algorithms. An
alternative approach, however, is to develop, reversible
transformations that can be applied to a source text that improve
LZW algorithm ability to compress and also offer a sufficient
level of security of the transmitted information.

Index Terms—Data Compression, Data Transmission, LZW,
Information Security, Multimedia.

I. INTRODUCTION

ITH the emergence of wireless sensor networks and
distributed video applications, distributed source

compression has become an important research area. A
significant amount of effort has been devoted to understanding
the information theoretic limits of distributed lossless and
lossy compression and developing codes to achieve these
limits. However, in many real-life applications involving
distributed compression, such as distributed video surveillance
or monitoring of some private information, secure compression
and communication while meeting the end-to-end quality of
service requirements becomes important. In this paper we

Manuscript received Oct, 02, 2010.
Ali Makki Sagheer is with the University of Anbar, Anbar,Iraq. He is now
with the Information System Department, College of Computer (Phone No.:
009647901705213; e-mail: ali_makki_sagheer@yahoo.com).

consider the information theoretic limits of secure lossless
source compression in the presence of an adversary who has
access to some of the links in the network as well as its own
correlated observation of the data to be compressed. We
consider information theoretic secrecy, that is, we want to limit
the information leakage to a computationally unbounded
eavesdropper who has the full knowledge of the compression
algorithms used.

II. BACKGROUND

A. Data Compression
Data compression is the process of converting an input data

stream (the source stream or the original raw data) into another
data stream (the output, or the compressed, stream) that has a
smaller size. A stream is either a file or a buffer in memory.
Data compression is popular for two reasons: (1) People like
to accumulate data and hate to throw anything away. No matter
how big a storage device one has, sooner or later it is going to
overflow. Data compression seems useful because it delays
this inevitability. (2) People hate to wait a long time for data
transfers. When sitting at the computer, waiting for a Web
page to come in or for a file to download, we naturally feel
that anything longer than a few seconds is a long time to wait
[1].

B. Lossless and Lossy Algorithms
Compression algorithms can be either lossy or lossless.

Lossy algorithms can give substantially better compression
ratios in some cases because they perform nonreversible
changes. One scenario in which this is acceptable could be
digital sound compression. Lossless algorithms restore the
original data perfectly. A general purpose algorithm which can
not depend on any knowledge on the input data must be
lossless. This is obviously necessary when compressing
software, because one single bit of error can lead to a
disastrous run-time failure.

Lossy methods are viable in some circumstances when
compressing software. The requirement in such a case is that
the compressed program operates exactly the same as if it had
not been compressed. An example of a lossy compression that
is possible for software is a compiler that optimizes for space
by transforming certain operations into equivalent operations
that use less storage, or removes unused functions [2].

Development of Secure LZW Technique for
Secret Compressed Data Transmission

Ali M. Sagheer

W

962

C. Dictionary Methods
The dictionary methods, as the name implies, maintain a

dictionary or codebook of words or text strings previously
encountered in the text input and data compression is achieved
by replacing strings in the text by a reference to the string in
the dictionary. The dictionary is dynamic or adaptive in the
sense that it is constructed by adding new strings being read
and it allows deletion of less frequently used strings if the size
of the dictionary exceeds some limit. It is also possible to use a
static dictionary like the word dictionary to compress the text.
The most widely used compression algorithms (Gzip and Gif)
are based on Ziv-Lempel or LZ77 coding [3] in which the text
prior to the current symbol constitute the dictionary and a
greedy search is initiated to determine whether the characters
following the current character have already been encountered
in the text before, and if yes, they are replaced by a reference
giving its relative starting position in the text. Because of the
pattern matching operation the encoding takes longer time but
the process has been fine tuned with the use of hashing
techniques and special data structures. The decoding process is
straightforward and fast because it involves a random access of
an array to retrieve the character string.

A variation of the LZ77 theme, called the LZ78 coding,
includes one extra character to a previously coded string in the
encoding scheme. A more popular variant of LZ78 family is
the so-called LZW algorithm which leads to widely used
Compress utility, developed by Terry Welch in 1984 [4] and
[5]. This method uses a suffix tree to store the strings
previously encountered and the text is encoded as a sequence
of node numbers in this tree. To encode a string the algorithm
will traverse the existing tree as far as possible and a new node
is created when the last character in the string fails to traverse
a path any more. At this point the last encountered node
number is used to compress the string up to that node and a
new node is created appending the character that did not lead
to a valid path to traverse. In other words, at every step of the
process the length of the recognizable strings in the dictionary
gets incrementally stretched and is made available to future
steps [6].

D. Stream Ciphers
Stream ciphers have extensive applications, many of them

are in the area of wireless communication. As an example, they
are part of the security framework in GSM networks,
Bluetooth or WLANs. There is an ongoing effort to analyze
existing algorithms and to design new ones in the academic
community as well as in companies or governmental
organizations. The fact that well established techniques for
passive side channel attacks such as Differential Power
Analysis (DPA) do not work with stream ciphers increases the
interest in them even more. The stream cipher is one of
important secret-key cryptosystem. Several researches on
stream ciphers was mainly focused on the development of
efficient stream ciphers in hardware.

Linear Feedback Shift Registers (LFSRs) are the main
building blocks of these ciphers, because of their good

statistical properties and their efficiency in hardware. To make
these LFSRs cryptographically secure, the two most common
practices are the use of a Boolean function (sometimes
complemented with some nonlinear memory bits) and the
irregular clocking of LFSRs. Two widely used stream ciphers
based on this research are A5 used in GSM mobile phones and
E0 used in the Bluetooth standard [7].

E. RC4 Stream Cipher
RC4 was designed by Ron Rivest in 1987 in an attempt to

make a stream cipher which is more suitable for software
implementations. He did not use LFSRs at all, but used a
dynamic permutation instead. The design was a trade secret
of RSA Inc. but leaked 1994 when someone anonymously
posted the source code to the Cypherpunks mailing list. The
security of RC4 was of course not affected as it issolely based
on the used key. Even though this alleged version was never
officially confirmed to be equivalent to the original version by
RSA Inc., there is strong evidence to assume this.
Subsequently, the notation RC4 refers to the alleged version of
the algorithm. RC4 is one of the most popular stream ciphers,
it is heavily used in SSL/TLS or IEEE 802.11 and is integrated
into many widely used open-source libraries or applications of
Microsoft or Oracle. Hardware implementations [8] have been
considered as well.

III. DEVELOPMENT OF SECURE LZW TECHNIQUE

Many applications require data to be both secured and
compressed. Stream ciphers are extremely fast cryptologics but
rarely used today because of improved computer speed and the
ciphers lack of diffusion. Lossless compression algorithms add
a bit of diffusion, with the statistics of previous plaintext
effecting future output, but make it only slightly more difficult
for an adversary to read traffic. Using a stream cipher to
dictate the direction of the compression algorithm eliminates
the need for two algorithms, improves the speed performance
while leaving the compression ratio unchanged.

I combined stream ciphers with dictionary methods such as
LZW, eventually; the stream cipher based on Pseudo Random
Number Generator (PRNG) from input.

The LZW method starts by initializing the dictionary to all
the symbols in the alphabet. In the common case of 8-bit
symbols, the first 256 entries of the dictionary (entries 0
through 255) are occupied before any data is input. Because
the dictionary is initialized, the next input character will
always be found in the dictionary. This is why an LZW token
can consist of just a pointer. In the encoding stage the pointer
is XORed with the random number that is generated from
PRNG of RC4, and then is stored in the output secret
compressed file. The decoding stage is opposite operation, the
secret number is read from the secret compressed file, then
XORed with PRNG from RC4 to return the pointer of the
write token in dictionary.

A. Secure LZW Encoding
The output of this improved algorithm is fixed-length

963

references to the dictionary (indexes). Of course, we can’t just
remove all symbols from the output and add nothing
elsewhere. Therefore the dictionary has to be initialized with
all the symbols of the input alphabet and this initial dictionary
needs to be made known to the decoder. Also the initialization
of the PRNG from seed secret input key must be done before
encoding.

The encoding algorithm consists of two phases which are
executed sequentially.

An initialization phase:
- KSA (Key Scheduling Algorithm).
- Dictionary Construction.

A secure LZW encoding phase:
- PRGA (Pseudo Random Generation Algorithm)
- LZW Encoding.

 Both parts access an internal table of size n * 2n bits,
which can be viewed as an array containing 2n words of size n.
Let's look at the two parts of the algorithm in more detail.
Even if the internal table has a size of n * 2n bits, the total
number of states is not 2n*2n , (which would be 22048 in the case
of n = 8). Only permutations of 2n words are possible, thus
leading to a total number of (2n)!, different table-states.

Using a word-size of 8, the number of different table-states
is (28)! 1684.

At first, the KSA is initializing the internal state to the
identity permutation. Using the words in the variable sized
key, each word in the internal state is swapped with another
one. The identity permutation is permuted 256 times (in the
case of n=8) depending on the key. If the key is smaller than
2048 bits (again in the case of n=8), it is reused.

Algorithm 1: Initialization Phase
Input: key0, key1, key2, ….., keym

Output: State 0, State 1, State 2, ….., State255,
Dictionary0, Dictionary1, ….. , Dictionary255

1: set Dictionaryi := Chari ; for i:=0,1 , …. , 255 ;
2: set State i := i ; for i:=0,1 , …. , 255 ;
3: let j := 0 ;
4: for i := 0 to 255 do the following:

4.1: j := j + key i + State i ;
4.2: swap(State i , State j);

5: Output State and Dictionary.

The generation of the output operates similar to the key
scheduling. The internal state is evolving (again, using the
swap operation) with every generated output symbol. An
outline is depicted in the following algorithm. The actual
algorithm of the secure LZW encoding is as follows:

Algorithm 2: Secure LZW Encoding Processing Phase
Input: Data file,

State 0, State 1, State 2, ….., State255

Output: Secret compressed Data file.
1: Set initial values

1.1: set i := 0;
 1.2: set j := 0;

1.3: set w := NIL;
2: While not end of input Data file do the following:

2.1: s := next symbol from input;
2.2: if (ws exists in the dictionary)

2.1.1: w := ws;
2.3: else

2.3.1: m := index(w);
2.3.2: add ws to the dictionary;
2.3.3: w := s;

2.4: i := i + 1;
2.5: j := j + State i ;
2.6: swap(State i , State j);
2.7: State k := State(State i + State j);
2.8: c := m Statek

2.9: write c in output Data file
2.10: End if

3: End While
4: Output: Encoded Data file

B. Secure LZW Decoding
The decoder starts with the first entries of its dictionary

initialized to all the symbols of the alphabet (normally 256
symbols). It then reads its input stream (which consists of
encrypted pointers- to the dictionary-) and uses decryption of
each pointer to retrieve uncompressed symbols from its
dictionary and write them on its output stream. It also builds its
dictionary in the same way as the encoder (this fact is usually
expressed by saying that the encoder and decoder are
synchronized or that they work in lockstep).

The decoding algorithm consists of two phases also which
are executed sequentially.

An initialization phase:
- KSA (Key Scheduling Algorithm).
- Dictionary Construction.

A secure LZW decoding phase:
- PRGA (Pseudo Random Generation Algorithm)
- LZW Decoding.

The initial phase is the same as in the encoding.
The actual algorithm of the secure LZW encoding is as

follows:

Algorithm 3: Secure LZW Decoding Processing Phase
Input: Secret compressed Data file,

State 0, State 1, State 2, ….., State255

Output: Data file.
1: Set initial values

1.1: set i := 0
 1.2: set j := 0

1.3: set w := NIL
2: While not end of input Data file do the following:

2.1: c := next symbol from input
2.2: i := i + 1
2.3: j := j + State i

964

2.4: swap(State i , State j)
2.5: State k State(State i + State j)

2.6: m := c Statek

2.7: s:= Dictionarym;
2.8: if (ws exists in the dictionary)

2.1.1: w := ws;
2.9: else

2.3.1: write s in output Data file;
2.3.2: add ws to the dictionary;
2.3.3: w := s;

2.10: End if
3: End While
4: Output: Decoded Data file.

IV. IMPLEMENTATION

The proposed technique is implemented in C++, the input
key is variable size as the level of security is needed. The
security of any cryptographic technique is the security of the
used key. The key be secure as long as is large size. The input
key represents the seed of the PRNG, which used as an
expanded key to XOR with output code from LZW. This
technique is implemented for various Data files with different
size and value using several key lengths. Which give a secure
code with efficient compression ratio.
Example:-

- Let the input key is [56, 24, 59, 29, 93, 102, 41, 199] with
size of 64-bit.

- Let the input Data file contains:
 “sir sid eastman easily teases seas sick seals”
- The secure LZW code file is contain:
 “113 108 123 46 276 127 3 73 87 50 57 55 9 25 385 400

195 209 168 198 136 276 88 33 45 378 384 433 185 140 100
297 51 25 234”,

the secure LZW code con not be decoded without the
generation the PRNG from the input key which used the
encode the Data file.

- While the original LZW code file is contain:
 “115 105 114 32 256 100 32 101 97 115 116 109 97 110

262 264 105 108 121 32 116 263 115 101 115 259 277 259
105 99 107 281 97 108 115”,

which is change according to changing of the input key.

V. CONCLUSION

The simplicity of the round algorithm also makes for ease of
implementation, reducing the likelihood of errors. As well, the
number of operations required is quite small, making it
efficient. Further, only byte operations are required making it
efficient when implemented on small processors, and the
memory requirements are reasonable. On the other hand, it is
not easy or efficient to the byte operations do not take
advantage of the wider busses available on newer processors.
As a result there has been interest recently in adapting the
algorithm to make use of wider busses.

In the proposal secure LZW technique the difficulty of
knowing where any value is in the table and difficulty of

knowing which location in the table is used to select each
value in the sequence. Also the compressed code has less
redundancy -high randomness-, the encryption of the
compressed code became more secure and randomness than
encryption of the classical plaintext. The proposed technique
appears more strength and secure with the same of the
compression ratio of the original LZW.

REFERENCES

[1] David Salomon, Data Compression, 3rd ed. Springer-Verlag New
York, Inc., 2004, pp. 1,–64.

[2] Nicolas Tsiftes, “Using Data Compression for Energy-Efficient
Reprogramming of Wireless Sensor Networks”, M.S. thesis,Computer
Science, Stockholm University, Sweden 2007.

[3] J. Ziv and A. Lempel. “A universal algorithm for sequential data
compression", IEEE Transactions on Information Theory, IT-
23:337{343, 1977.

[4] Welch, T. A. “A Technique for High-Performance Data Compression,”
IEEE Computer 17(6):8–19, June,1984.

[5] Phillips, Dwayne, “LZW Data Compression,” The Computer
Application Journal Circuit Cellar Inc., 27:36–48, June/July,1992.

[6] Nan Zhang, “Transform Based and Search Aware Text Compression
Schemes and Compressed Domain Text Retrieval”, Ph.D. dissertation,
School of Computer Science, College of Engineering and Computer
Science, University of Central Florida, Orlando, Florida, 2005.

[7] Golomb, S. W., “Shift register sequences”, Aegean Park press, 1982.
[8] P. Kitsos, G. Kostopoulos, N. Sklavos, and O. Koufopavlou. Hardware

Implementation of the RC4 Stream Cipher. In 46th IEEE Midwest
Symposium on Circuits & Systems '03, 2003.

Ali Makki Sagheer was born in Basrah-1979.
He got on B.Sc. in Computer Science
Department at the University of Technology
(2001)-Iraq, M.Sc. in Data Security from the
University of Technology (2004)-Iraq and
Ph.D. in Computer Science from the University
of Technology (2007)-Iraq.
He is interesting in the following Fields
(Cryptology, Information Security, Number
Theory, Multimedia Compression, Image

Processing and Coding Systems). He is published many papers in
different conferences and scientific magazines.

965

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

