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Abstract — Texture is defined in acoustics as a subjective 

measure described with three qualities regarding 
reflectograms. Here we propose using fractal dimension for 
texture analysis, thanks to ability of fractals to reveal hidden 
phenomena within the signal. Further discussion towards 
quantitative descriptors of texture, based on obtained results, 
will be provided. 

Keywords — Fractal dimension, reflectogram, room 
impulse response, fractal dimension, fractals. 

I. INTRODUCTION

N this paper we try to analyze texture as a subjective 
parameter of phenomena in room impulse responses 

(RIR). According to texture definition given in [1] it 
should be observed in the early part of reflectogram while 
high-quality texture requires a large number of early 
reflections, uniformly but not precisely spaced apart, 
allowing no one to dominate. Due to waveforms of RIRs 
(see Fig. 2. and Fig. 3. for instance) it is not an easy task to 
find reliable quantitative measure for texture. 

In [2] texture parameter is defined as the number of the 
peaks higher than Schubert curve in the first 80 ms of RIR. 
This method uses Hilbert transformation for envelope 
extraction. Since reflectograms are signals with high 
variance changes, Hilbert transform usually does not give 
preferrable results without preprocessing. 

However, visual inspection of logarithmic scale of RIR 
is common in practice. All criteria in abovementioned 
definition of texture can be condensed in a term of space-
filling property of reflectograms. It transfers RIR analysis 
in the field of fractals. 

Mandelbrot [3] defined fractals as sets (curves 
representing RIRs, in our case) whose Hausdorff 
dimension is not an integer, while Hausdorff dimension 
deals with tiling the set (i.e. planar curve here). Hausdorff 
measure is impractical to calculate and many other 
definitions of fractal dimension (FD) are defined; some of 
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them will be presented in this paper. Generally speaking, 
FD reflects signal complexity. It will be later seen, through 
different definitions of FD, that complexity can be viewed 
as a space-filling property of the curve (i.e. signal). 

We will not examine whether signal is fractal or not. 
Indeed, all fractals in nature manifest self-similar (fractal) 
behavior only in limited range of scales. Instead, we will 
restrict our analysis on examination of fractal properties of 
signals and compare values of FD with reflectograms
having always in mind definition of texture. 

There is variety of examples of using fractal properties 
in literature such as with biomedical signals [4]–[6], 
seismograms [7], in telecommunication traffic analysis [8],  
and many other areas. Most often parameters used are 
multifractal spectrum (MFS) and FD obtained with 
different methods. MFS and its parameters are usually 
investigated for classification of signals, while FD is used 
for recognition of some characteristics of the signal. Our 
concept developed in this paper relies on fractals’
capability to grade the quality of RIR segments. Overall 
assessment of RIR signal would be done trough cost 
function including individual segment evaluation. 

Paper is organized as follows. In the second chapter we 
describe four FDs that will be used for testing texture 
criteria of RIR. The third chapter deals with computer 
generated signals as a preparation or calibration of FD 
methods for texture evaluation. Conclusions made in this 
chapter will be used in qualitative analysis of real signals 
in fourth chapter. In conclusion we discuss obtained 
results and propose next steps in texture description.  

II. FRACTAL DIMENSION ALGORITHMS

A. Variance Fractal Dimension Trajectory 

For signals represented as fractional Brownian motion 
(fBm) process, �����, it is proved [3]: 

��	
����  |��|��, (1) 

where ���  ������ � ������ and ��  �� � ��. Here �  
stands for Hurst exponent. From (1) it follows: 

  �  ������� ��� � ������ 
�!"������|��|� #. (2) 

Fractal dimension, $% , can be calculated using Hurst 
exponent and Euclidean dimension, & (&  ' for 
waveforms): 

$%  & ( ' � �. (3) 

From (2) and (3) it is possible to determine variance 
fractal dimension trajectory (VFDT). VFDT plots variance 
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of fractal dimension in time. For the time series, ) *
+�'�, +�-�, . , +�/��, it is calculated for each window of 0�1 /� samples shifting in time for +234� samples. In [9] 
it is shown that windows should overlap, *+234� 1 0, in 
order to obtain better performances of VFDT. Variance of 
increment process within the window is calculated for 
range of increments, ��5  -5 [10]. Hurst exponent can be 
determined as a slope in log-log plot of variance as it is 
shown in (1).  

B. Katz algorithm 

Katz [11] algorithm assumes signal as a sequence of
pairs consisting of sample number and value of the 
waveform:  )  
�', +��, �-, +��, . , �/, +6��. For two 
points in the sequence, �3, +7� and 89, +:;, Euclidean 
distance can be calculated as: 

<3+�8+7, +:;  =�3 � 9�� ( 8+7 � +:;�. (4) 

The length of the curve of waveform is then determined 
as a sum of Euclidean distances between successive 
points: 

>  ∑ <3+��3, 3 ( '�6@�7A� *. (5) 

Katz defined fractal dimension as a consequence of 
exponential behavior in >�<� graph: 

$  BCD*�E�
BCD*�F� (6) 

where <  G�HI<3+��+7, +:�J, 3, 9  ', . ,/ is diameter 
(or planar extent) of the curve. If there are no intersections 
of the curve, < can be estimated as a maximum of 
distances between the first sample and all subsequent 
samples in time series. 

Katz further normalized both length of the curve and 
diameter dividing them by average distance between 
successive points, �K: 

$  BCD*�EL�K�
BCD*�FL�K�  BCD*�M�

BCD�M�NBCD*�F E⁄ � , P Q E
�K (7) 

As it was earlier explained with VFDT, Katz algorithm 
is applied on overlapping windows [12] and given 
dependence fractal dimension – number of samples, i.e. 
fractogram, is further analyzed. 

C. Higuchi algorithm 

Higuchi algorithm [13] considers time series 
represented as: )  
+�'�, +�-�, . , +�/��. From this time 
series we construct new ones: 

             )5R  S+�G�, +�G ( T�, +�G ( -T�, . ,
+ UG ( V6@R

5 W � TX Y,*        (8) 

G  ',-, . , T. 

For each of such new time series, length of the curve is 
defined as:  

>R�T�  * �5 S∑ |+�G ( 3T� � +�G ( �3 � '�T�| � 6@�
VZ[\

] W5
VZ[\

] W
7A� Y (9) 

Length of the curve for the time interval k is then

computed as the sum: 

>�T�  ∑ >G�T�5RA�  . (10) 

Fractional dimension describes linear dependence in the 
double logarithmic scale graph of the length, >�T�: 
  >�T�  ^ � T@_ (11) 

where ^ is the constant. For different values for T, >�T� is 
plotted and the dimension is calculated as a coefficient of 
linear regression using least-square method.  

D. Sevcik algorithm 

Sevcik [14] proposed method for calculating fractal
dimension based on Hausdorff dimension: 

$`  ���a��
@���8b�a�;

����a�  , (12) 

where 0�c� is the number of segments of length -c
needed to cover the curve with length > . Substituting 0 in 
(12) with > �-c�⁄  gives: 

     $`  ���a��
@����E�NBd*��a�

����a�  ���a�� U' � BCD�E�@BCD*���
BCD*�a� X .  (13) 

Length of the curve should be calculated according to 
(5). Since points of abscissa (usually in time units) and 
points of ordinate (e.g. amplitude units) have different 
units, it is questionable the unit of the length. Therefore 
Sevcik proposed normalization of points of both 
coordinates of the curve )  
�', +��, . , �3, +7�. , �/, +6��: 

3e  7
6  ,  (14a) 

and 

+3e  fg@f\gh
f\ij@f\gh .  (14b) 

After transformations in (14), the length of the curve is 
calculated using (5). If we assume -c  ' �/ � '�⁄ , 
fractal dimension becomes: 

      $  $`  ���6k�l U' ( BCD*�E�
BCD*��6,�X* , /m  / � 'n (15) 

III. COMPUTER GENERATED SIGNALS

Definition of texture given in introduction will be
analyzed here in means of fractograms calculated for 
synthetic signals reflecting all three criteria of texture. We 
consider large number of early reflections as Criterion 1, 
no dominating reflections as Criterion 2 and 
uniformly/precisely spaced reflections as Criterion 3. 
Signals are generated using Matlab: 

Criterion 1:   
S1 = zeros(1,1000); 
S2 = S1; 
q = 10*rand(1,250)+1; 
S1(1:4:end) = q; 
S2 (1:25:end) = q(1:40); 
S = [S1 S2 S1 S2]; 

Criterion 2:  
S1 = zeros(1,1000); 
S2 = S1; 
q = 10*rand(1,250)+1; 

595



S1(1:4:end) = q; 
S2 = S1/7; 
S = [S1 S2 S1 S2]; 

Criterion 3: 
S1 = zeros(1,1000); 
q = 10*rand(1,250)+1; 
S1(1:4:end) = q; 
S2(randperm(1000)) = S1; 
S = [S1 S2 S1 S2]; 

Here command rand(m,n) generates matrix of size mxn 
with values from the uniform distribution on the interval 
[0,1] and randperm(n) gives random permutation of 
integers 1,2,…,n. Results are presented in Fig.1. There are 
three signals describing all three criteria and computed 
fractograms for three methods: Katz, Higuchi and Sevcik. 
Length of the window for fractal dimension calculation is 
100 samples and shifting value is 50 samples (50% 
overlapping). Comments on results in Fig. 1. will be given 
in the next chapter, together with results of real signal 
analysis.

Fig. 1. Computer generated signals according texture criteria (first row), Katz’s fractogram (second row), Higuchi’s 
fractogram (third row) and Sevcik’s fractogram (fourth row). 

Fig. 2. Two different RIRs before acoustic redesign (first row) and corresponding Hurst exponents’ variations (second 
row), RIRs after acoustic redesign (third row) and corresponding Hurst exponents (fourth row). 

IV. REAL SIGNALS

We tested VFDT algorithm for two real RIRs as it is
shown in Fig. 2. both in cases before and after acoustic 
room redesign. Sampling frequency is 44.1 kHz, length of 

window is 200 samples and shift is 50 samples. All signals 
are normalized in range [0,1] as it is important to make 
comparative analysis. From time domain it is obvious that 
RIRs after acoustic redesign are richer in number of 
reflections. It reflects on the Hurst exponent graph in 
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higher values of this parameter. This is explained by 
longer-range dependence reached in the RIRs recorded 
after redesign comparing to RIRs recorded before 
redesign. Values of Hurst exponent around zero indicate 
short-range dependences (SRD). 

Results of testing other three algorithms for FD 
calculation are presented in Fig. 3. It is seen, as it is 
expected after synthetic signal analysis, that Katz’s 
algorithm gives excellent results for criteria 1 and 2. 
Wherever there are reflections missing in the signal it is 
reflected on Katz’s fractogram corresponding to lower 
values of FD. It suggests us to find threshold in order to 
declare segments of the RIR above this threshold as
criteria 1 and 2 are satisfied then. Higuchi’s fractograms 

reflect changes of RIR segments quality according to 
criterion 1 in bigger variance, while we could not test its 
capabilities as indicator of criterion 3 due to nonzero 
values of samples which do not represent reflections. 
Criterion 1 therefore can be quantitatively described by 
thresholding the first derivative of the Higuchi’s 
dimension. Finally, Sevcik’s fractogram, as it is seen in 
Fig. 1. and Fig. 3., can be used for segmentation of regions 
in signal satisfying criteria 1 and 2. Actually, this method 
indicates changes in reflections’ density (criterion 1) as 
fluctuations of FD’s values. Also Sevcik’s FD shows
peaks where amplitude changes its value and it can be 
observed both in real and synthesized signals.   

Fig. 3. Three different RIRs (first row) and corresponding fractograms: Katz’s (second row), Higuchi’s (third row) and 
Sevcik’s (fourth row). 

V. CONCLUSION

Results obtained in this paper imply the role of FD in 
classification of RIR signals in respect of texture
definition. Thus, three algorithms (Katz, Higuchi and 
Sevcik) described in paper indicate changes in reflections 
density within reflectogram (criterion 1). Amplitude 
oscillations (criterion 2) can be detected in Katz’s and 
Sevcik’s fractograms, while uniformity of reflections 
disposition is evident in  Higuchi’s. It is also shown the 
influence of acoustical redesign of the hall on prolonging 
dependances in the signal (Hurst parameter greater than 
0.5). In future we will continue our work on fractal 
analysis of RIR and seek for quantitative measures of 
texture quality, such as thresholding already discussed 
here. 
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