18th Telecommunications forum TELFOR 2010

Serbia, Belgrade, November 23-25, 2010.

Design and HDL implementation of original
64 — bit network processor core

Danijela Jakimovska, Student Member, IEEE, Goce Dokoski, Marija Kalendar, Member, IEEE,
Aristotel Tentov, Member, IEEE

Abstract — As digital technology evolves the demand for
new standards and protocols, cost constraints and time-to-
market requirements also increase. To meet these
challenges, a common solution today is to replace the
hardwired application specific integrated circuits (ASIC)
with application-specific instruction-set processors (ASIP).
This trend is especially apparent in the field of network
packet processing, more specifically by the use of ASIP
network processors in the telecommunication equipment.
Their architecture is usually a subject to various trade-offs
such as between performance and flexibility. Accordingly, in
this paper we discuss the network processor design, and we
propose modified 64-bit general purpose RISC architecture.
The proposed network processor is implemented in a
language for instruction set architectures (LISA), which
allows us to verify its functionality and to evaluate its
performance capabilities. Additionally, the LISA model was
used for hardware description level (HDL) code generation,
which can be additionally simulated on FPGA board.

Keywords — FPGA, network processor architecture, next

generation networks, RISC, VHDL.
Computer networks and internet grow rapidly and the
number of users and services is constantly increasing
as well. Network devices must follow this evolution in
order to cope with the increased network traffic and the
needs for real-time data processing at very high speeds,
up to multi Gb/s. Not to mention that data, voice and
video networks are converging and that users are looking
for on-demand services delivered in any place, at any
time, [1] - [3].
Routers are traditionally designed as application

specific integrated circuits, adjusted for the tasks of
routing and forwarding information, [1], [4]. However,

[. INTRODUCTION

Danijela Jakimovska, Msc, is teaching and research assistant at the
Faculty of Electrical Engineering and Information Technologies, Ss. Cyril
and Methodius University, Skopje, R. Macedonia (e-mail:
danijela@feit.ukim.edu.mk).

Goce Dokoski, Msc, is teaching and research assistant at the Faculty of
Electrical Engineering and Information Technologies, Ss. Cyril and
Methodius University, Skopje, R. Macedonia (e-mail:
goce.dokoski@feit.ukim.edu.mk).

Marija Kalendar, Msc, is Ph.D. student, and teaching and research
assistant at the Faculty of Electrical Engineering and Information
Technologies, Ss. Cyril and Methodius University, Skopje, R. Macedonia
(e-mail: marijaka@feit.ukim.edu.mk).

Aristotel Tentov, Phd, is professor at the Faculty of Electrical
Engineering and Information Technologies, Ss. Cyril and Methodius
University, Skopje, R. Macedonia (e-mail: toto@feit.ukim.edu.mk).

155

this approach has showed inflexibility when it comes to
adding new capabilities. At the same time, the availability

of the System on Chip (SoC) technology, Field
programmable gate architecture (FPGA), and the
Complex programmable logic device (CPLD), has

enabled many new possibilities in processor design. This
led to the concept of a network processor (NP),
characterized as chip-programmable device, customized
for network processing application, [1] - [5]. NPs are
usually implemented as ASIP processors, with customized
instruction set, which may be based on reduced
instruction set computing (RISC), complex instruction set
computing (CISC) or very long instruction word (VLIW)
architecture etc., [2]. NPs have proven themselves as the
most appropriate solution for achieving a good balance
among price, flexibility and performance required for
network packet processing. In fact, they are flexible and
programmable like general purpose processor (GPP) and
at the same time they can be very specific and may
achieve high performance like ASIC.

Nowadays, there are a lot of different NP architectures,
and is expected that the NP market will show strong
growth in the near future. Since NP vendors target
various applications with different requirements, many
approaches have been applied and many new ideas are
emerging, such as the NetFPGA architecture [6], or
software routers, [7]. In this paper we discuss the current
trends in NP design in order to propose novel 64-bit
RISC-based network processor architecture. As well we
analyze the improvements and performance capabilities of
the proposed architecture, and also we evaluate the HDL
description of the processor, in order to verify its design.
Lastly, we can implement the processor core in a real
hardware platform such as FPGA board, considering its
limitations.

The rest of this paper is organized as follows: Section II
outlines the state of the art in NP design and as well gives
some ideas for FPGA use in network processing domain.
Section III describes the proposed network processor
architecture, analyzes its implementation characteristics,
and outlines its performance capabilities. The paper
concludes in section IV, where the benefits of the
proposed solution are pointed out and the intended future
work that should be carried out is emphasized.

II.

NPs development started about 20 years ago [2], and
since then, a vide variety of NPs have been proposed, each
characterized with different organization and concepts.
Nowadays, the most well-known NPs utilize multi-core
architectures that can operate in parallel, pipeline or
hybrid mode, [2], [3]. The architectures can vary,
depending on the NP application category which can be:
entry-, mid- or core-level. Usually mid-level NPs that
process packets at higher layers, implement parallel
architectures, while core-level NPs that require highest
processing speeds at the lower network layers, implement
pipeline architectures, [2], [8].

According to [2], NPs can be classified in pipelines or
parallel pools of processors, depending on the
organization of their processing cores or hardware
accelerators. The NPs may have one or more cores which
can be homo- or hetero-geneous. The Intel IXP2800
processor incorporates 16 identical multi-threaded
processor cores, organized as a pool of parallel
homogeneous processing elements [9], and an additional
32-bit XScale core responsible for control plane
processing. Each processing element represents 32-bit
RISC core with the same instruction set. This NP
organization is very advantageous in the simplicity of
programming the elements, and thus the Intel IXP2800
NP can achieve 10 Gb/s processing speed. On the other
hand, the Agere’s NPs utilize multi-core organization
with heterogeneous processing elements. They are
implemented as pipeline, where each various core is
responsible for one pipeline stage processing, [2].
Furthermore, the EZChip’s NP-1-4 network processors
are an example of a pipeline of heterogeneous multi-core
processors. Their cores are called Traffic Optimized
Processors (TOP cores), since they are optimized for
specific processing tasks. In fact, the heterogeneousness
complicates the programming, but it allows achieving
near-ASIC processing speeds. Therefore, the newest NP-4
processor can reach a total throughput of 100 Gb/s, [10].

Considering all this, we can notice that the NP research
area is very popular and is constantly advancing with new
solutions and improvements. However, the processor
design is not so simple, having in mind the price and the
time that has to be spend until the chip verification and
real hardware implementation. This is where the FPGA
technology comes of great significance, as it is very
appropriate for hardware testing and simulation of HDL
processor description.

An example of a popular usage of FPGA for network
hardware design is the NetFPGA platform. The NetFPGA
is constructed as a PCI card that contains an FPGA, four
1GigE ports and buffer memory (SDRAM and DRAM). It
consists of modules connected as a sequence of stages in a
pipeline, which communicate by using a simple packet-
based synchronous first-in first-out (FIFO) push interface,
[6]. Although its primary intent is research, the NetFPGA
emphasizes the idea of combining FPGA with the NPs.

STATE OF THE ART

156

ITII. DESIGN AND IMPLEMENTATION OF NOVEL NETWORK
PROCESSOR ARCHITECTURE

In order to meet the increased speed and performance
requirements, we propose novel NP architecture, based on
RISC and Harvard organization. Initially, we are going to
modify general purpose RISC core architecture, and as
well enhance its fundamental instruction set. Afterwards
we will try to verify the proposed design and evaluate its
performance capabilities. This paper presents the design
and implementation of simply one 64-bit RISC-based
processor core that can be further used as part of some
upcoming multi-processor NP organization.

A. Basic components

The proposed NP architecture is based on a standard
RISC 64-bit Harvard processor architecture combined
with several hardware accelerators and adjusted for IP
packet processing. The Harvard organization is used
because it is very convenient for simultaneous read/write
operations to the data/program memory. Furthermore, the
simplicity of RISC architecture, improves the NP
organization, by allowing short simple one cycle
instructions to be executed in a 5-stage (fetch, decode,
execute, memory access, write back) pipeline. Actually,
the main idea behind this NP architecture is the
possibility of modifying 64-bit general purpose RISC
processor architecture and adapting it for network
processing application.

The proposed RISC core architecture includes: internal
program and data memory (instruction and data cache),
64-bit arithmetical logic unit, two operand and one result
register, 128 general purpose registers and 64 packet
header registers (packet header buffer). The processor
core, as usual, includes program counter and instruction
register, responsible for instruction execution control. The
NP design is enriched with packet buffer status register,
used for storing some important information (IP version,
header length etc.) of the packet being processed, and
special functional unit responsible for CRC code
validation and calculation. The proposed internal
architecture of the NP core is presented on Figure 1.

We consider that this NP core does general packet
processing for the both IP versions, [11], [12]. Initially,
packets received on the MAC interface, are stored in the
data memory, and after the processing is finished, they
are sent out to the forwarding engine. Usually, the only
part of the packet that is being processed is the IP header.
As a result, the basic IP header is first loaded and stored
in the additional 64 packet header registers. The network
processor has enough register resources for storing the
options field of IPv4 header and one extension header of
IPv6 header, in the packet buffer registers. The main idea
behind this is a novel routing protocol that is supported by
this network processor architecture, described in [13].
This routing protocol uses the option fields of IPv4 header
or one extension header of IPv6 header for storing the
whole IP packet path, similar to the source routing option.

Program Counter 4B Ge P Redist
neral Purpose Registers
FETCH Program Counter 4B 128 x 8B B ﬂ
Packet Header Registers Operand 1 8B
Program Memory 64 x 8B Operand 2 8B
512x 8B
Current Packet Status 8B BB/@/ BB@/
8 ALU
Instruction Register 8B
i
8B 8B 8B
Operand 3 8B
Decoder
Data Memory MAC Forwarding CRC
Instruction Execution Unit 2048x 88 Interface Engine Engine

Fig. 1. Proposed network processor architecture

Actually, the NP is composed of 128 general purpose
registers, and 64 packet header registers, and all of them
can be addressed with completely 8 bits. The codes
starting with b00, b0l or b10 are used to denote register
indexes, and the remaining 64 codes, starting with bll
are used for addressing the packet header fields (IP
version, TTL), placed in the packet header buffer, and
named as alias registers. Actually, the last 64 codes are
divided, one half for IPv4 fields, and the other for IPv6
fields. Then, for example, the first general purpose
register is addressed as b000000000, and the first field of
the packet header (IPv4), is addressed as b11000000. All
instructions can work with these alias registers as
operands specified by the appropriate IP header field
name (ex. ip4_ver, ip4 header length, etc.). This allows
for a more flexible (and faster) packet header processing
and greater convenience to the programmer. When the
compiler is built, this kind of access to the packet header
fields will be allowed via system calls.

A. Instruction set

The NP instruction set is based on the simple RISC
instruction set, additionally optimized for IP packet
processing by employing several instructions for hardware
accelerators control, CRC code calculation and validation,
and by enabling direct manipulation with the IP header
fields. The instructions are 64-bits long and they can be
defined in three various formats: register, immediate and
control (R, I and C format, accordingly).

The register instructions (sub, add, xor etc.) are three-
address instructions, operating with registers. These
instructions allow simultaneous shift of the second
operand, during the execution of an arithmetical/logical
instruction. On the other hand, the immediate instructions
(load, store, add, etc.) always include at least one
immediate operand and they are used for register-to-
memory or memory-to-register transfer, and conditional
brunches. However, depending on the operands used,
some instructions (ex. comparison) can be implemented
as either R- or I-type. The last instruction format, C —
type, is used for: unconditional branching, procedure
calls, CRC code calculation and validation, and traps.

157

Finally, the processor should support very simple
addressing modes, since it has RISC based architecture,
[2]. Thus, it implements some of the simplest addressing
modes like register, immediate and index addressing.
Finally, all the processor operations are generally related
with memory or various register accesses.

B. HDL processor implementation

The proposed NP architecture was modeled using the
language for instructions set architectures - LISA. It is a
modeling language general enough to model any kind of
instruction set driven processors, and yet powerful enough
to model specialized instruction set processors, [14].
Therefore we used LISA language to describe the
modified RISC architecture, and analyze its
functionalities. Accordingly, we defined its memory and
bus architecture, a standard 5-stage instruction pipeline
and the instruction set specific to the network processing.

The LISA model was used for processor simulation and
verification of its functionality. Additionally we wrote
some simple assembler programs and analyzed the
operation of the NP core. The simulation results
confirmed that the processor core is working properly, so
its memory and register resources were correctly
modified. During the verification process, we could count
the number of processor cycles required for the assembler
programs execution, and further measure the processor
performance.

Later, the LISA model was used for automatic
generation of VHDL code description of the NP core. The
HDL code allowed us to investigate the processor
architecture at lower level. We used ISE design suite tool
to synthesize the NP core and evaluate its implementation
characteristics. Therefore, the NP core incorporates 13612
flip flops, 16 adders/subtractors, 286 registers, 211
comparators, 208 multiplexers and some additional
components. These statistics must be taken in
consideration, because the circuit complexity can
significantly influence on power consumption,
overheating and overall performance capabilities of the
designed NP core.

C. Performance evaluation

In order to estimate the performance trade-offs for the
proposed NP core architecture, we would calculate the
theoretical maximum of instruction cycles allowed for
each IP packet processing at the desired speeds of
1/10/100 Gb/s. For that purpose, we made some
computations, assuming that the network processor core
is working at 250 MHz (frequency that can be achieved
on Xilinx Virtex5 FPGA board) and that the average data
packet size is 512B. In order to achieve 1/10/100 Gb/s
speed, the NP core should finish the processing of one
packet within 1024/102/10 processor cycles, accordingly.

Considering the proposed NP architecture, we
evaluated its performance by analyzing assembler
programs for general IPv4 and IPv6 packet processing.
We simulated these programs and estimated the number
of processor cycles needed for each IP packet processing.
Additionally we considered that the NP core can achieve
different results, according to the memory type used
(SRAM/DRAM), [15]. In our analyses, we compared the
performance of the proposed modified RISC core with
general RISC core, and afterwards we measured the
possible improvements. The results are shown on figure 2.

¥ 500 E 600

5 :

“qm-’wo E 500

$.3501 2 400 —
5 300 5

$ 250 @ 300 - —
S 200 it

s 2 200 4 —
2150 4 s

S -

+ 100 - °

s 5 g 100 4 —
E £

= 04 T é 0 4 T

SRAM DRAM
| BRISC OModif. RISC |

SRAM DRAM
| BRISC OModif. RISC|

Fig. 2. IP packet processing cycles (IPv4 and IPv6) for
RISC and modified RISC network processor core,
depending on the memory type (SRAM/DRAM) used

Figure 2 presents that the modified RISC core, using
SRAM memory, achieves IP processing for 115, and 140
processor cycles, for IPv4, and IPv6 packets, accordingly.
On the other side, if the modified RISC core, utilizes
DRAM memory, the IP packet processing cycle’s number
is 355 and 500, for IPv4, and IPv6, accordingly. In the
both cases, the modified RISC NP architecture achieves
better results, compared to the general RISC processor
core. Actually, if the proposed modified RISC core uses
SRAM memory, the packet processing is accelerated by
51% and 10% for Ipv4, and IPv6 packets, accordingly.
For the modified RISC processor core using DRAM
memory the achieved improvements are: 25% and 3% for
Ipv4, and IPv6 packet processing, accordingly. These
results show that the proposed NP architecture,
implemented on Virtex 5 Xilinx FPGA board can achieve
throughput in the theoretical boundaries of 2-9 Gb/s. The
initial results are very promising and the authors will

158

continue to investigate new ways for improving the NP
core performance.

IV. CONCLUSION

In this paper, we propose a novel NP architecture that
should be able to cope with multi-gigabit networks. Its
key architectural aspects are: enhanced instruction set,
instruction level parallelism by employing five stage
pipelines, one cycle execution of complex instructions,
use of packet buffer registers for holding the IP header,
and direct manipulation with the IP header fields. The
proposed NP core architecture was described in LISA,
and afterwards simulated and verified. Additionally we
could measure the design characteristics and evaluate its
performance capabilities. Obviously, higher throughput
can be achieved in real hardware, without the Xilinx
VIRTEX 5 FPGA board implementation limitations.

A lot of work still can be done, as for example speeding
up the IP routing process and investigating new strategies
for memory architectures. Some of these ideas are already
described in another paper, [13]. However, all the work
that has been done bothers the authors to continue with
the research, and achieve better and more realistic results.

REFERENCES

H. Jonathan Chao, Bin Liu, “High Performance Switches and Routers
High speed switches and routers”, Wiley-IEEE Press, May 2007

Ran Giladi, “Network Processors - Architecture, Programming and
Implementation”, Morgan Kaufmann Publisher, Ben-Gurion
University of the Negev and EZchip Technologies Ltd., 2008
Mahmood Ahmadi, Stephan Wong, “Network Processors: Challenges
and Trends”, Proceedings of the 17th Annual Workshop on Circuits,
Systems and Signal Processing, ProRisc, pp. 222-232, Veldhoven,
The Netherlands, November 2006

Panos C. Lekkas, “Network Processors: Architectures, Protocols and
Platforms”, McGraw-Hill Professional, 2003

Mohammad Shorfuzzaman, Rasit Eskicioglu, Peter Graham,
“Architectures for Network Processors: Key Features, Evaluation, and
Trends”, Proc. on Communications in Computing, pp.141-146, 2004
Jad Naous, Sara Bolouki, Glen Gibb, Nick McKeown, ‘“NetFPGA:
Reusable Router Architecture for Experimental Research”,
Proceedings of PRESTO, Stanford University, California, USA, 2008
Michele Petraccaa, Robert Birkea, Andrea Bianco, “HERO: High-
speed enhanced routing operation in software routers NICs” ,
Proceedings of the 4th international telecommunication networking
workshop on QoS in multiservice IP networks, Politec. di Torino,
2008

Simon Hauger, Thomas Wild, Arthur Mutter, Andreas Kirstédter,
Kimon Karras, Rainer Ohlendorf, Frank Feller, and Joachim Scharf,
“Packet Processing at 100 Gbps and Beyond—Challenges and
Perspectives”, in Proceedings of the 10. ITG Symposium on Photonic
Networks, May 2009

Intel Corporation, Intel IXP2800 Network Processor® Product Brief,
For OC-192/10 Gbps network edge and core applications, 2004

[10] NP-4, 100-Gigabit Network Processor for Carrier Ethernet
Applications, Product Brief, 2010
[11] Andreas Moestedt, Peter Sjodin, Torsten Kohler, “Header

Processing Requirements and Implementation Complexity for IPv4
Routers”, White paper, HP Laboratories Bristol, September, 1998
] RFC2460, “Internet Protocol, Version 6 (IPv6) Specification”
] Marija Kalendar, Aristotel Tentov, Danijela Jakimovska and Goce
Dokoski, “Modified IP Routing Process Supported by a Novel
Network processor Architecture”, In the proceeding of 54™ ETRAN
conference, Serbia, 2010
CoWare Processor Designer Product Family, LISA Language
Reference Manual, Product Version V2009.1.1, CoWare, Inc., 2009
W. Eatherton, G. Varghese, Z. Dittia, “Tree bitmap:
Hardware/Software I[P Lookups with Incremental Updates”,
SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

